Unsupervised domain adaptation for activity recognition across heterogeneous datasets
نویسندگان
چکیده
منابع مشابه
Unsupervised Domain Adaptation for I-vector Speaker Recognition
In this paper, we present a framework for unsupervised domain adaptation of PLDA based i-vector speaker recognition systems. Given an existing out-of-domain PLDA system, we use it to cluster unlabeled in-domain data, and then use this data to adapt the parameters of the PLDA system. We explore two versions of agglomerative hierarchical clustering that use the PLDA system. We also study two auto...
متن کاملAn unsupervised deep domain adaptation approach for robust speech recognition
This paper addresses the robust speech recognition problem as a domain adaptation task. Specifically, we introduce an unsupervised deep domain adaptation (DDA) approach to acoustic modeling in order to eliminate the training–testing mismatch that is common in real-world use of speech recognition. Under a multi-task learning framework, the approach jointly learns two discriminative classifiers u...
متن کاملDeep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملBoosting for Unsupervised Domain Adaptation
To cope with machine learning problems where the learner receives data from different source and target distributions, a new learning framework named domain adaptation (DA) has emerged, opening the door for designing theoretically well-founded algorithms. In this paper, we present SLDAB, a self-labeling DA algorithm, which takes its origin from both the theory of boosting and the theory of DA. ...
متن کاملUnsupervised Transductive Domain Adaptation
Supervised learning with large scale labeled datasets and deep layered models has made a paradigm shift in diverse areas in learning and recognition. However, this approach still suffers generalization issues under the presence of a domain shift between the training and the test data distribution. In this regard, unsupervised domain adaptation algorithms have been proposed to directly address t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pervasive and Mobile Computing
سال: 2020
ISSN: 1574-1192
DOI: 10.1016/j.pmcj.2020.101147